BERT

Is It Worth the (Environmental) Cost? Limited Evidence for the Benefits of Diachronic Continuous Training

Language is constantly changing and evolving, leaving language models to quickly become outdated, both factually and linguistically. Recent research proposes we continuously update our models using new data. Continuous training allows us to teach …

Benchmarking Post-Hoc Interpretability Approaches for Transformer-based Misogyny Detection

Transformer-based Natural Language Processing models have become the standard for hate speech detection. However, the unconscious use of these techniques for such a critical task comes with negative consequences. Various works have demonstrated that …

Measuring Harmful Sentence Completion in Language Models for LGBTQIA+ Individuals

Current language technology is ubiquitous and directly influences individuals' lives worldwide. Given the recent trend in AI on training and constantly releasing new and powerful large language models (LLMs), there is a need to assess their biases …

Pipelines for Social Bias Testing of Large Language Models

The maturity level of language models is now at a stage in which many companies rely on them to solve various tasks. However, while research has shown how biased and harmful these models are, **systematic ways of integrating social bias tests into …

XLM-EMO: Multilingual Emotion Prediction in Social Media Text

Detecting emotion in text allows social and computational scientists to study how people behave and react to online events. However, developing these tools for different languages requires data that is not always available. This paper collects the …

HONEST: Measuring Hurtful Sentence Completion in Language Models

Language models have revolutionized the field of NLP. However, language models capture and proliferate hurtful stereotypes, especially in text generation. Our results show that **4.3% of the time, language models complete a sentence with a hurtful …

FEEL-IT: Emotion and Sentiment Classification for the Italian Language

Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for …

MilaNLP @ WASSA: Does BERT Feel Sad When You Cry?

The paper describes the MilaNLP team’s submission (Bocconi University, Milan) in the WASSA 2021 Shared Task on Empathy Detection and Emotion Classification. We focus on Track 2 - Emotion Classification - which consists of predicting the emotion of …

Universal Joy A Data Set and Results for Classifying Emotions Across Languages

While emotions are universal aspects of human psychology, they are expressed differently across different languages and cultures. We introduce a new data set of over 530k anonymized public Facebook posts across 18 languages, labeled with five …

Cross-lingual Contextualized Topic Models with Zero-shot Learning

We introduce a novel topic modeling method that can make use of contextulized embeddings (e.g., BERT) to do zero-shot cross-lingual topic modeling.